Implementing Untyped λ-Calculus in Haskell

slide: Jaiyalas Lin Jen-Shin (godfat)

godfat.org/slide/2012-05-08-lambda-draft.pdf

Who Am I?

What I learned?

- 2007~present: (learning) Haskell
- 2006~present: Ruby
- 2005~2008: C++
- 2001~2004: C

What I worked?

- roodo.com
- cardinalblue.com

Where you can find me

- github.com/godfat
- twitter.com/godfat
- profiles.google.com/godfat

How I started to learn Haskell

- PLT at ssh://bbs@ptt.cc

How I started to learn Haskell

- PLT at ssh://bbs@ptt.cc
- IIS at Sinica

How I started to learn Haskell

- PLT at ssh://bbs@ptt.cc
- IIS at Sinica
- FLOLAC

Table of Contents

- What can Haskell do?
- What is λ-Calculus?
- Why Implement λ-Calculus?
- Let's Implement λ-Calculus
- Questions?
- References
- What can Haskell do?
- What is λ-Calculus?
- Why Implement λ-Calculus?
- Let's Implement λ-Calculus
- Questions?
- References

Defined in 1990

Successor of Miranda from 1985

Implementing Untyped λ-Calculus

- What can Haskell do?

Haskell 98

Haskell 2010

GHC (Glasgow Haskell Compiler)

- STM (Software Transactional Memory)

GHC (Glasgow Haskell Compiler)

- STM (Software Transactional Memory)
- Template Haskell

GHC (Glasgow Haskell Compiler)

- STM (Software Transactional Memory)
- Template Haskell
- GADT (Generalized Algebraic Data Type)

Notable Projects

- Audrey Tang's (唐鳳) Pugs

Notable Projects

- Audrey Tang's (唐鳳) Pugs
- xmonad

Notable Projects

- Audrey Tang's (唐鳳) Pugs
- xmonad
- Darcs

Parallelism vs Concurrency?

- par-tutorial

Parallelism vs Concurrency?

- par-tutorial
- Parallelism \neq Concurrency

Parallelism vs Concurrency?

- par-tutorial
- Parallelism \neq Concurrency
- Parallelism is not concurrency
-What can Haskell do?
-What is λ-Calculus?
-Why Implement λ-Calculus?
- Let's Implement λ-Calculus
- Questions?
- References

What is λ-Calculus?

An important formal system for functional programming

- What is λ-Calculus?

\llcorner Turing Machine

Turing Machine

L What is λ-Calculus?

\llcorner Turing Machine

by Alan Turing in 1936

Implementing Untyped λ-Calculus
What is λ-Calculus?
L Turing Machine

Turing Machine

- Infinite tape which stores symbols (memory)

Turing Machine

- Infinite tape which stores symbols (memory)
- Finite action table which represents
(state, symbol) \rightarrow action (program)

Turing Machine

- Infinite tape which stores symbols (memory)
- Finite action table which represents
(state, symbol) \rightarrow action (program)
- Robotic arm (CPU with a register which stores current state)

Turing Machine

- Infinite tape which stores symbols (memory)
- Finite action table which represents
(state, symbol) \rightarrow action (program)
- Robotic arm (CPU with a register which stores current state)
- Read the symbol on the tape at current position

Turing Machine

- Infinite tape which stores symbols (memory)
- Finite action table which represents
(state, symbol) \rightarrow action (program)
- Robotic arm (CPU with a register which stores current state)
- Read the symbol on the tape at current position
- Write a symbol on the tape at current position

Turing Machine

- Infinite tape which stores symbols (memory)
- Finite action table which represents (state, symbol) \rightarrow action (program)
- Robotic arm (CPU with a register which stores current state)
- Read the symbol on the tape at current position
- Write a symbol on the tape at current position
- Move the tape left or right
- What is λ-Calculus?

\llcorner Turing Machine

Turing Complete

So what is λ-calculus?

Alligator Eggs!

http://worrydream.com/AlligatorEggs/

by Alonzo Church in 1930s

Also Turing complete

but why?

- What is λ-Calculus?

L λ-Complete

Define λ-Complete

Whatever

 λ-calculus can doImplement Turing machine in λ-calculus

λ-Complete

- So λ-calculus can do anything TM can do

λ-Complete

- So λ-calculus can do anything TM can do
- Plus what λ-calculus can do without a TM

λ-Complete

- So λ-calculus can do anything TM can do
- Plus what λ-calculus can do without a TM
- Thus λ-calculus is Turing complete
- What is λ-Calculus?

L λ-Complete

On the other hand...

Implementing Untyped λ-Calculus
What is λ-Calculus?
Implement λ-calculus in Turing machine

So Turing machine is also λ-complete

Implementing Untyped λ-Calculus

- What is λ-Calculus?

L λ-Complete

They have the same computability

What exactly is λ-calculus?

- ($\lambda \mathrm{x} . \mathrm{x}+1$)

What exactly is λ-calculus?

- ($\lambda \mathrm{x} . \mathrm{x}+1$)
- ($\lambda \mathrm{x} . \mathrm{x}+1$) 1

What exactly is λ-calculus?

- ($\lambda \mathrm{x} . \mathrm{x}+1$)
- ($\lambda \mathrm{x} . \mathrm{x}+1) 1$
- $=(1+1)$

What exactly is λ-calculus?

- ($\lambda \mathrm{x} . \mathrm{x}+1$)
- ($\lambda \mathrm{x} . \mathrm{x}+1) 1$
- $=(1+1)$
- $=2$

Does it look like Lisp?

$(\lambda f .(\lambda x . f(x) x))(\lambda x . f(x \quad x)))$

- What is λ-Calculus?

Church Encoding

L Church Encoding

Natural Numbers

- $0 \equiv \lambda f . \lambda x . \quad x$
- $1 \equiv \lambda f . \lambda x . f x$
- $n \equiv \lambda f . \lambda x . f^{n} x$

Computation with Natural Numbers

- succ $\equiv \lambda n . \lambda f . \lambda x . f(n f x)$
- plus $\equiv \lambda m . \lambda n . \lambda f . \lambda x . m f(n f x)$

L Church Encoding

Booleans

-true $\equiv \lambda a . \lambda b . a$

- false $\equiv \lambda \mathrm{a} . \lambda \mathrm{b} . \mathrm{b}$

Computation with Booleans

- and $\equiv \lambda m \cdot \lambda n . m n m$
- or $\equiv \lambda m . \lambda n . m m n$
- not $\equiv \lambda m . \lambda a . \lambda b . m b a$
- if $\equiv \lambda m . \lambda a . \lambda b . m$ a b

Recursion? No problems

Y combinator

- Discovered by Haskell Curry
$-y=(\lambda f .(\lambda x . f(x \quad x))(\lambda x . f(x \quad x)))$

Y combinator

- Discovered by Haskell Curry
- $y=(\lambda f .(\lambda x . f(x \quad x))(\lambda x . f(x \quad x)))$
- $y \mathrm{f}=(\lambda \mathrm{f} .(\lambda \mathrm{x} . \mathrm{f}(\mathrm{x} x))(\lambda x . f(\mathrm{x} x))) \mathrm{f}$

Y combinator

- Discovered by Haskell Curry
$-y=(\lambda f .(\lambda x . f(x \quad x))(\lambda x . f(x \quad x)))$
- $y f=(\lambda f .(\lambda x . f(x \quad x))(\lambda x . f(x \quad x))) f$
- $y f=f(y f)$

Paul Graham, I know what is Y combinator!

Fixed Point Combinator

- Strict languages need some delay
- $Z=(\lambda x . f(\lambda v .((x \quad x) v)))(\lambda x . f(\lambda v .((x \quad x) v)))$
- Discovered by Alan Turing
$-\theta=(\lambda x . \lambda y . \quad(y(x \times y)))(\lambda x . \lambda y . \quad(y(x \quad x y)))$

Implementing Untyped λ-Calculus

- What is λ-Calculus?

L Fixed Point Combinator

Fixed Point Combinator

- Constructed by Jan Willem Klop
- $Y k=(L L L L L L L L L L L . .$.
where $L=\lambda$ abcdefghijklmnopqstuvwxyzr. (r (thisisafixedpointcombinator))
- What can Haskell do?
- What is λ-Calculus?
- Why Implement λ-Calculus?
- Let's Implement λ-Calculus
- Questions?
- References
- My interest in researching programming languages
- My interest in researching programming languages
- Implementing λ-calculus in Haskell could teach us a lot in programming languages
- My interest in researching programming languages
- Implementing λ-calculus in Haskell could teach us a lot in programming languages
- It's my most influential Haskell exercise

Let's Learn Haskell The Hard Way You a Haskell For Great Good!

But before we started...

- No parsing here
- No parsing here
- Parse tree (S-expression) interpreter only
- No parsing here
- Parse tree (S-expression) interpreter only
- Haskell is also good at parsing
- No parsing here
- Parse tree (S-expression) interpreter only
- Haskell is also good at parsing
- e.g. parser combinator and parsec
-What can Haskell do?
-What is λ-Calculus?
- Why Implement λ-Calculus?
- Let's Implement λ-Calculus
- Questions?
- References

Let's Implement $\boldsymbol{\lambda}$-Calculus

First Expression and evaluate (source)

module Main where

First Expression and evaluate (source)

module Main where
data Expression = Literal Integer
| Plus Expression Expression

First Expression and evaluate (source)

module Main where
data Expression = Literal Integer
| Plus Expression Expression
evaluate :: Expression -> Integer
evaluate (Literal i) = i
evaluate (Plus expr0 expr1) =
evaluate expr0 + evaluate expr1

First Expression and evaluate (source)

module Main where
data Expression = Literal Integer
| Plus Expression Expression
evaluate :: Expression -> Integer
evaluate (Literal i) = i
evaluate (Plus expr0 expr1) = evaluate expr0 + evaluate expr1
test0 = evaluate (Literal 1)
test1 = evaluate (Plus (Literal 1) (Literal 2))
test2 $=$ evaluate (Plus (Plus (Literal 1)
(Literal 2))
(Literal 3))

Algebraic Datatypes

data Expression = Literal Integer
| Plus Expression Expression

Think of interface and subclasses if you like OOP

Pattern Matching

data Expression = Literal Integer
| Plus Expression Expression
evaluate :: Expression -> Integer
evaluate (Literal i) = i
evaluate (Plus expr0 expr1) = evaluate expr0 + evaluate expr1

Think of dynamic_cast or instanceof with a switch if you like OOP

First Expression and evaluate (source)

module Main where
data Expression = Literal Integer
| Plus Expression Expression
evaluate :: Expression -> Integer
evaluate (Literal i) = i
evaluate (Plus expr0 expr1) = evaluate expr0 + evaluate expr1
test0 = evaluate (Literal 1)
test1 = evaluate (Plus (Literal 1) (Literal 2))
test2 $=$ evaluate (Plus (Plus (Literal 1)
(Literal 2))
(Literal 3))

Variable and Environment (source)

module Main where
data Expression = Literal Integer
| Plus Expression Expression
| Variable String

Variable and Environment (source)

module Main where
data Expression = Literal Integer
| Plus Expression Expression
| Variable String
type Environment = [(String, Integer)]

Variable and Environment (source)

module Main where
data Expression = Literal Integer
| Plus Expression Expression
| Variable String
type Environment = [(String, Integer)]
evaluate :: Expression -> Environment -> Integer

Variable and Environment (source)

module Main where
data Expression = Literal Integer Plus Expression Expression
Variable String
type Environment = [(String, Integer)]
evaluate :: Expression -> Environment -> Integer
evaluate (Literal i) env = i
evaluate (Plus expr0 expr1) env = evaluate expr0 env + evaluate expr1 env
evaluate (Variable name) env = case lookup name env of (Just i) -> i

Variable and Environment (source)

test0 = evaluate (Variable "var") [("var", 1)]
test1 = evaluate (Plus (Variable "var") (Literal
2)) [("var", 1)]

Type Alias

module Main where
data Expression = Literal Integer
| Plus Expression Expression Variable Name
type Name = String
type Environment = [(Name, Integer)]
evaluate :: Expression -> Environment -> Integer evaluate (Literal i) env = i evaluate (Plus expr0 expr1) env = evaluate expr0 env + evaluate expr1 env
evaluate (Variable name) env =
case lookup name env of (Just i) -> i

Let's Implement $\boldsymbol{\lambda}$-Calculus

Pair of a and b

("var", 2) :: (String, Integer)
(2, "var") :: (Integer, String)

List of a

[1,2,3] :: [Integer]
["a","b","c"] :: [String]
[("var", 1)] :: [(String, Integer)]

Curried Functions

evaluate :: Expression -> Environment -> Integer

Curried Functions

evaluate :: Expression -> (Environment -> Integer)

Uncurried Functions

evaluate :: (Expression, Environment) -> Integer

Uncurried Functions

threeArguments ::
(String, String, String) -> Integer

Curried Function

threeArguments ::
String -> String -> String -> Integer

Curried Function

threeArguments ::
String -> (String -> String -> Integer)

Curried Function

threeArguments : :
String -> (String -> (String -> Integer))

(->) is
 right-associative

Partially Applied Function

filter :: (a -> Bool) -> [a] -> [a]
above60 :: [a] -> [a] above60 = filter (>=60)
above60 [1..65] -- [60,61,62,63,64,65]

Partially Applied Function

```
map :: (a -> b) -> [a] -> [b]
div2 :: [Integer] -> [Integer]
div2 = map (`div`2)
div2 [1..5] -- [0,1,1,2,2]
```


Function Composition

(.) :: (b -> c) -> (a -> b) -> a -> c above60AndDiv2 :: [Integer] -> [Integer] above60AndDiv2 = div2 . above60
above60AndDiv2 [1..65] -- [30,30,31,31,32,32]

Function Composition

compose :: (b -> c) -> (a -> b) -> a -> c compose $g \mathrm{f} x=\mathrm{g}$ ($\mathrm{f} x$)

Curried functions make function composition powerful, function composition makes curried function even more useful.

List of Partially Applied Functions

mapPlus $=$ map (+) -- think of [(+), (+), ...]
mapPlus1to5 $=$ mapPlus [1..5]
-- think of [(1+), (2+), ...]
map (\$1) mapPlus1to5 -- [2,3,4,5,6]
-- applicative functor style
(+) <\$> [1..5] <*> [1] -- [2,3,4,5,6]

Exception Handling

data Expression = Literal Integer Plus Expression Expression | Variable Name
type Name = String
type Environment = [(Name, Integer)]
type Value = Maybe Integer
evaluate :: Expression -> Environment -> Value

Exception Handling

Exception Handling

```
evaluate (Plus expr0 expr1) env =
    let val0 = evaluate expr0 env
    vall = evaluate exprl env
    in
        case val0 of
        (Nothing) -> Nothing
        (Just i0) -> case vall of
    (Nothing) -> Nothing
    (Just il) -> Just (i0 + il)
```


Maybe Monad with do notation

```
evaluate (Plus expr0 expr1) env =
    do
    val0 <- evaluate expr0 env
    vall <- evaluate exprl env
    return (val0 + val1)
```


Do notation underneath

evaluate (Plus expr0 expr1) env =
evaluate expr0 env >>= \val0 ->
evaluate expr1 env >>= \vall -> return (val0 + val1)

liftM2

evaluate (Plus expr0 expr1) env = evaluate expr0 env `plus` evaluate expr1 env where plus = liftM2 (+)

Sorry! To be continued...

Peek the final work

https://github.com/godfat/sandbox/blob/master/haskell/fpug/01/l

We're hiring

Feel free to ask me questions online

- github.com/godfat
- twitter.com/godfat
- profiles.google.com/godfat

References

- To be listed...

