
Reactor Pattern
&

Event-Driven Programming
A scalable concurrent approach,
using EventMachine with Thin as an example

Lin Jen-Shin, http://godfat.org/

http://godfat.org
http://godfat.org

Reactor Pattern
&

Event-Driven Programming
http://godfat.org/slide/2010-02-29-reactor-pattern-and.pdf

Lin Jen-Shin, http://godfat.org/

http://godfat.org/slide/2010-02-29-reactor-pattern-and.pdf
http://godfat.org/slide/2010-02-29-reactor-pattern-and.pdf
http://godfat.org
http://godfat.org

Table of Contents

Table of Contents

•concurrency, why and how in network

Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in
Flash with Ruby syntax

Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in
Flash with Ruby syntax

•Reactor Pattern in EventMachine with Thin

Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in
Flash with Ruby syntax

•Reactor Pattern in EventMachine with Thin

•how Thin works

Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in
Flash with Ruby syntax

•Reactor Pattern in EventMachine with Thin

•how Thin works

•how EventMachine works

Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in
Flash with Ruby syntax

•Reactor Pattern in EventMachine with Thin

•how Thin works

•how EventMachine works

concurrency, why
and how in network

concurrency, why
and how in network

• [network I/O] is slow, we shouldn't wait for
[network I/O] while make [CPU] idle.

concurrency, why
and how in network

• [network I/O] is slow, we shouldn't wait for
[network I/O] while make [CPU] idle.

•you can replace [network I/O] and [CPU]
with all other resources like [disc I/O],
[memory I/O], etc.

concurrency, why
and how in network

• [network I/O] is slow, we shouldn't wait for
[network I/O] while make [CPU] idle.

•you can replace [network I/O] and [CPU]
with all other resources like [disc I/O],
[memory I/O], etc.

•each kernel process/thread for each client
using a blocking I/O is easy to write but not
scalable at all

Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in
Flash with Ruby syntax

•Reactor Pattern in EventMachine with Thin

•how Thin works

•how EventMachine works

Event-Driven Programming
to the rescue

Event-Driven Programming

•only one process/thread

Event-Driven Programming

•only one process/thread

• inversion of control

Event-Driven Programming

•only one process/thread

• inversion of control

•consists of an event loop and various
event handlers

Event-Driven Programming

• inversion of control

Event-Driven Programming
loop{
 # you control the flow
 do_something
}

• inversion of control

Event-Driven Programming
loop{
 # you control the flow
 do_something
}

• inversion of control

register method(:do_something)
loop{
 # event loop control the flow,
 # later it calls your callback
 event = pop_event_queue
 dispatch event if event
}

•consists of an event loop and various
event handlers

Event-Driven Programming
register method(:do_something)
loop{
 # event loop control the flow,
 # later it calls your callback
 event = pop_event_queue
 dispatch event if event
}

•consists of an event loop and various
event handlers

Event-Driven Programming
register method(:do_something)
loop{
 # event loop control the flow,
 # later it calls your callback
 event = pop_event_queue
 dispatch event if event
}

•consists of an event loop and various
event handlers

Event-Driven Programming
register method(:do_something)
loop{
 # event loop control the flow,
 # later it calls your callback
 event = pop_event_queue
 dispatch event if event
}

Event-Driven Programming
in Flash with Ruby syntax

Event-Driven Programming
in Flash with Ruby syntax
•game loop, an example of event loop

Event-Driven Programming
in Flash with Ruby syntax
•game loop, an example of event loop

•Flash ActionScript, onEnterFrame

Event-Driven Programming
in Flash with Ruby syntax
•game loop, an example of event loop

•Flash ActionScript, onEnterFrame

• frame by frame

Event-Driven Programming
in Flash with Ruby syntax

in each sprite thread
30.times{
 application.draw sprite
 sprite.x += 1
}

in each sprite thread
30.times{
 application.draw sprite
 sprite.x += 1
}

sprite.onEnterFrame = lambda{
 sprite.x += 1
}

application.register sprite
30.times{ # event loop, also called game loop
 events = application.pop_event_queue
 events.each{ |event|
 application.dispatch event
 }
 # model/view separation
 application.draw application.sprites
}
in each sprite thread
30.times{
 application.draw sprite
 sprite.x += 1
}

sprite.onEnterFrame = lambda{
 sprite.x += 1
}

Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in
Flash with Ruby syntax

•Reactor Pattern in EventMachine with Thin

•how Thin works

•how EventMachine works

Reactor Pattern

Reactor Pattern
loop{
 data = read
 handle data
}

Reactor Pattern
loop{
 data = read
 handle data
}

register method(:handle)
loop{
 data = partial_read
 event = process data
 dispatch event if event
}

Event-Driven Programming
loop{
 # you control the flow
 do_something
}

register method(:do_something)
loop{
 # event loop control the flow,
 # later it calls your callback
 event = pop_event_queue
 dispatch event if event
}

Reactor Pattern
loop{
 data = read
 handle data
}

register method(:handle)
loop{
 data = partial_read
 event = process data
 dispatch event if event
}

Reactor Pattern

by wikipedia

• resources # e.g. network I/O

Reactor Pattern

by wikipedia

• resources # e.g. network I/O

• synchronous event demultiplexer
i.e. the blocking event loop

Reactor Pattern

by wikipedia

• resources # e.g. network I/O

• synchronous event demultiplexer
i.e. the blocking event loop

•dispatcher
i.e. handler manager and event dispatcher

Reactor Pattern

by wikipedia

• resources # e.g. network I/O

• synchronous event demultiplexer
i.e. the blocking event loop

•dispatcher
i.e. handler manager and event dispatcher

• request handler # e.g. thin handler

Reactor Pattern

by wikipedia

Reactor Pattern
Request

(resource)

Reactor Pattern
Request

(resource)
EventMachine
(demultiplexer
 + dispatcher)

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

EventMachine
(demultiplexer
 + dispatcher)

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

Rack Thin
handler

EventMachine
(demultiplexer
 + dispatcher)

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

Rack Thin
handler

EventMachine
(demultiplexer
 + dispatcher)

Rack Rails
adapter rack env

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

Rack Thin
handler

EventMachine
(demultiplexer
 + dispatcher)

Rails Rack Rails
adapter rack env

Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

Rack Thin
handler

EventMachine
(demultiplexer
 + dispatcher)

Rails

your rails
application

Rack Rails
adapter rack env

Reactor Pattern
EventMachine is a generic network I/O server/client
library due to I/O and request handler separation in

Reactor Pattern

•EventMachine (Ruby)

Reactor Pattern

•EventMachine (Ruby)

•Twisted (Python)

Reactor Pattern

•EventMachine (Ruby)

•Twisted (Python)

•nodejs (JavaScript in V8)

Reactor Pattern

•EventMachine (Ruby)

•Twisted (Python)

•nodejs (JavaScript in V8)

• libevent and libev (C)

Reactor Pattern

• select (POSIX)

Reactor Pattern

• select (POSIX)

•poll (POSIX)

Reactor Pattern

• select (POSIX)

•poll (POSIX)

•epoll (Linux)

Reactor Pattern

• select (POSIX)

•poll (POSIX)

•epoll (Linux)

•kqueue (BSD, Mac OS X (Darwin))

Reactor Pattern

Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in
Flash with Ruby syntax

•Reactor Pattern in EventMachine with Thin

•how Thin works

•how EventMachine works

how Thin works
•Thin::Server

how Thin works
•Thin::Server

•Thin::Backends::TcpServer
communicate with EventMachine

how Thin works
•Thin::Server

•Thin::Backends::TcpServer
communicate with EventMachine

•Thin::Connection
EventMachine event handler

how Thin works
•Thin::Server

•Thin::Backends::TcpServer
communicate with EventMachine

•Thin::Connection
EventMachine event handler

•Thin::Request
partial HTTP request parsing
Rack env builder

how Thin works

Sorry! To be continued......

how Thin works

Sorry! To be continued......

?

