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• [network I/O] is slow, we shouldn't wait for 
[network I/O] while make [CPU] idle.

•you can replace [network I/O] and [CPU] 
with all other resources like [disc I/O], 
[memory I/O], etc.

•each kernel process/thread for each client 
using a blocking I/O is easy to write but not 
scalable at all



Table of Contents

•concurrency, why and how in network

•Event-Driven Programming explained in 
Flash with Ruby syntax

•Reactor Pattern in EventMachine with Thin

•how Thin works

•how EventMachine works



Event-Driven Programming
to the rescue



Event-Driven Programming

•only one process/thread



Event-Driven Programming

•only one process/thread

• inversion of control



Event-Driven Programming

•only one process/thread

• inversion of control

•consists of an event loop and various
event handlers



Event-Driven Programming

• inversion of control



Event-Driven Programming
loop{
  # you control the flow
  do_something
}

• inversion of control



Event-Driven Programming
loop{
  # you control the flow
  do_something
}

• inversion of control

register method(:do_something)
loop{
  # event loop control the flow,
  # later it calls your callback
  event = pop_event_queue
  dispatch event if event
}



•consists of an event loop and various
event handlers

Event-Driven Programming
register method(:do_something)
loop{
  # event loop control the flow,
  # later it calls your callback
  event = pop_event_queue
  dispatch event if event
}



•consists of an event loop and various
event handlers

Event-Driven Programming
register method(:do_something)
loop{
  # event loop control the flow,
  # later it calls your callback
  event = pop_event_queue
  dispatch event if event
}



•consists of an event loop and various
event handlers

Event-Driven Programming
register method(:do_something)
loop{
  # event loop control the flow,
  # later it calls your callback
  event = pop_event_queue
  dispatch event if event
}



Event-Driven Programming
in Flash with Ruby syntax



Event-Driven Programming
in Flash with Ruby syntax
•game loop, an example of event loop



Event-Driven Programming
in Flash with Ruby syntax
•game loop, an example of event loop

•Flash ActionScript, onEnterFrame



Event-Driven Programming
in Flash with Ruby syntax
•game loop, an example of event loop

•Flash ActionScript, onEnterFrame

• frame by frame
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30.times{
  application.draw sprite
  sprite.x += 1
}



# in each sprite thread
30.times{
  application.draw sprite
  sprite.x += 1
}

sprite.onEnterFrame = lambda{
  sprite.x += 1
}



application.register sprite
30.times{ # event loop, also called game loop
  events = application.pop_event_queue
  events.each{ |event|
    application.dispatch event
  }
  # model/view separation
  application.draw application.sprites
}
# in each sprite thread
30.times{
  application.draw sprite
  sprite.x += 1
}

sprite.onEnterFrame = lambda{
  sprite.x += 1
}
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• resources # e.g. network I/O

• synchronous event demultiplexer
# i.e. the blocking event loop

•dispatcher
# i.e. handler manager and event dispatcher

• request handler # e.g. thin handler

Reactor Pattern

by wikipedia
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Reactor Pattern
Request

(resource)
Thin (or AMQP)
(request handler)

Rack Thin 
handler

EventMachine 
(demultiplexer
 + dispatcher)

Rails

your rails 
application

Rack Rails 
adapter rack env



Reactor Pattern
EventMachine is a generic network I/O server/client
library due to I/O and request handler separation in
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•EventMachine (Ruby)

•Twisted (Python)

•nodejs (JavaScript in V8)

• libevent and libev (C)
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• select (POSIX)

•poll (POSIX)

•epoll (Linux)

•kqueue (BSD, Mac OS X (Darwin))
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how Thin works
•Thin::Server

•Thin::Backends::TcpServer
# communicate with EventMachine

•Thin::Connection
# EventMachine event handler

•Thin::Request
# partial HTTP request parsing
# Rack env builder
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